5x^2+6x^2=165

Simple and best practice solution for 5x^2+6x^2=165 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5x^2+6x^2=165 equation:



5x^2+6x^2=165
We move all terms to the left:
5x^2+6x^2-(165)=0
We add all the numbers together, and all the variables
11x^2-165=0
a = 11; b = 0; c = -165;
Δ = b2-4ac
Δ = 02-4·11·(-165)
Δ = 7260
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{7260}=\sqrt{484*15}=\sqrt{484}*\sqrt{15}=22\sqrt{15}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-22\sqrt{15}}{2*11}=\frac{0-22\sqrt{15}}{22} =-\frac{22\sqrt{15}}{22} =-\sqrt{15} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+22\sqrt{15}}{2*11}=\frac{0+22\sqrt{15}}{22} =\frac{22\sqrt{15}}{22} =\sqrt{15} $

See similar equations:

| 2x+4x=-3 | | 12x-12=20x+20 | | 7x-4=7x+2 | | 4y+6=2y-17 | | 4y-10=10, | | 23f-9f+19=~79 | | 4x+26=8x+2 | | 3x+10=8x+39 | | 3x-7-5x=-11 | | 2x+20=5x+44 | | 3x−7−5x=−11 | | (22-x)*4+22+46=96 | | 0=15x-(2x-5) | | 0=15-(2x-5) | | 12+5x-11=26 | | 3y=-12y-y | | 48-4v=2v+6 | | 7x-25=4x-7 | | 16.5=x | | 3x-8=2*3+x | | 6/x=30/36 | | 17(x+17)-13x-22=199+15x-(2x-5) | | 4z+4=5z-12 | | 72/64=x/40 | | 14x+7(-2x+4)-28=0 | | 6x-12•3-3x+16=10 | | 5y–0.3(8–y)=6 | | 4x+25=10x-5 | | 4x+7=6x−4 | | ​​9^(x+2)+3=52 | | 8/x-2=2 | | 5/x-2=3 |

Equations solver categories